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Abstract
Online learning represents an important family of efficient and scalable algorithms for large-scale classification problems.
Many of them are linear with fast computational speed, but when faced with complex classification, they more likely
have low accuracies. In order to improve accuracies, kernel trick is applied, however, it often brings high computational
cost. In fact, discriminative information is vital in classification which is still not fully utilized in these algorithms. In this
paper, we proposed a novel online linear method, called Sketch Discriminatively Regularized Online Gradient Descent
Classification (SDROGD). In order to exploit inter-class separability and intra-class compactness, SDROGD utilizes a
matrix to characterize the discriminative information and embeds it directly into a new regularization term. This matrix
can be updated by the sketch technique in an online manner. After applying a simple but effective optimization, we show
that SDROGD has a good time complexity bound, which is linear with the feature dimension or the number of samples.
Experimental results on both toy and real-world datasets demonstrate that SDROGD has not only faster computational speed
but also much better classification accuracies than some related kernelized algorithms.

Keywords Machine learning · Online learning · Classification · Sketch technique

1 Introduction

Online learning refers to a sequential machine learning task
where a predictive model is learned incrementally from a
sequence of data samples [1]. Unlike batch-wise methods,
online methods often use one sample or a mini batch of
samples per iteration to optimize their objective functions
[2]. As a result, they require less computational cost and
fewer memory resources and usually are used to deal with
large-scale problems [3].

Over the past decades, a number of online linear meth-
ods have been proposed, including perceptron [1], online
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passive-aggressive algorithms (PA) [4], Pegasos [5], and
so on. Perceptron tries to find a classification hyperplane
that can separate the samples completely. Its optimizer is
stochastic gradient descent (SGD). PA optimizes its objec-
tive function with the instantaneous loss from the new
coming sample, and it has a closed-form updating equation
[4]. Pegasos bases on offline support vector machine (SVM)
problem directly and also uses SGD to optimize the objec-
tive function [5]. Different from PA and perceptron, Pegasos
calculates the gradient and updates the parameters by a mini
batch of samples at each iteration. It has been proved that
Pegasos can converge to the actual SVM solution using
a decayed learning rate [5]. Due to the linear character-
istic, these methods have excellent computational speeds.
However, their classification accuracies are relatively lower,
especially in complex classification problems.

In order to improve the accuracies, a large number of ker-
nelized methods have been presented. Kernelized percep-
tron (KP) is the dual form of perceptron using kernel trick
[6]. Online gradient descent (OGD) can be considered as the
kernelized version of Pegasos with the batch size of samples
reducing to one [7]. Although they have better accuracies,
both KP and OGD have to preserve all the mislabeled sam-
ples in memory. As a result, they suffer from the severe
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computational and storage burden when faced with large-
scale data [8]. To alleviate the resource burden of KP and
OGD, budget online gradient descent (BOGD) is further
proposed which utilizes some strategies to maintain a fixed
number of mislabeled samples [9]. For example, it removes
the oldest one when the budget overflows for adding a new
one. Although fixing the number of mislabeled samples can
decrease the resource cost, BOGD performs more poorly
than KP and OGD due to the loss of much useful informa-
tion. Fourier online gradient descent (FOGD) and Nyströn
online gradient descent (NOGD) aim to approximate the
kernel matrix directly, which also avoid storing all the
mislabeled samples. FOGD adopts random Fourier feature
sampling technique, while NOGD uses Nyströn method to
approximate the matrix by a low-rank matrix [10]. Another
branch of online methods is based on least square SVM,
which obtains the solution by solving linear equations rather
than a quadratic programming problem [11]. One of the lat-
est related methods is called budget online least square SVM
(BOLSSVM) [12]. Although it computes matrix inverse
incrementally by constructing some vectors elaborately to
alleviate the cost, it still has a budget for mislabeled sam-
ples. These methods introduce kernel, so they usually have
better performance than linear ones. However, they suffer
from expensive computational cost. Consequently, how to
keep high classification accuracy and low computational
burden simultaneously is vital for online learning.

In fact, discriminative information plays the most
important role in classification which directly influences
the hyperplane construction. However, most existing online
methods usually use the discriminative information only
in the loss function, that is, this information is not fully
utilized. Considered that the primary goal of classification
is to separate the samples of different classes in the
output space as far as possible, embedding discriminative
information into the regularization term could model this
metric.

In this paper, we propose a novel online linear method,
termed as Sketch Discriminatively Regularized Online
Gradient Descent Classification (SDROGD). To emphasize
on the discriminability of the hyperplane, SDROGD uses
a discriminative information matrix to describe the corres-
ponding information involved in the samples and embeds
it into a new discriminative regularization term. This new
term can effectively reflect inter-class separability and intra-
class compactness in an online manner. An approximate
approach, sketch technique, is used to update the matrix.
However, the sketch technique needs to maintain the matrix
explicitly in memory, which may still lead to expensive cost.
Therefore, a targeted optimization is adopted to cut down
the computational and storage cost of SDROGD, especially
on high-dimensional datasets. Theoretical analyses about
the approximative property of sketch technique, the

convergence property, and the computational complexity
are also given. Experimental results show that SDROGD
possesses not only faster computational speed but also
higher classification accuracies even than some kernelized
methods. We also test the effect of some hyperparameters,
which shows that SDROGD is insensitive about them to
some degree.

In summary, the contributions of this paper are that
we proposed a new online linear classification method,
called SDROGD, to deal with the large-scale dataset.
SDROGD is a linear method and it doesn’t store any
mislabeled sample, so it has good time complexity bound.
To our best knowledge, this is the first online classifier
embeds discriminative information into regularization term.
Besides, it is possible to extend SDROGD to deal with
multi-class problems.

The rest of this paper is organized as follows. Section 2
gives an overview of some related works. In Section 3,
we present our SDROGD model and its optimization.
The corresponding theoretical analysis is conducted in
Section 4. Experimental setting and results are shown in
Section 5. After giving the possible extension for multi-class
in Section 6, we conclude our work in Section 7 finally.

2 Related work

Pegasos is an online linear classifier which is based
on the offline SVM problem. It uses SGD to optimize
its objective function rather than sequential minimal
optimization (SMO), and thus has excellent computational
speed. Given the training set S = {(xi , yi)}Ni=1, where
xi ∈ R

d×1, yi ∈ {−1, 1} and d is the number of feature
dimension, the offline SVM problem is:

fp(w; S) = 1

|S|
∑

(x,y)∈S

l(w; (x, y)) + λ

2
wT w (1)

where l(w; (x, y)) is the hinge loss function defined as
follows:

l(w; (x, y)) = max(0, 1 − y(wT x)) (2)

wT w is the common Tikhonov regularization term. λ > 0.
Its optimizer SGD works iteratively. At iteration t ,

Pegasos firstly selects a mini batch of samples At randomly
and then uses the gradient of fp(w; At) to update its
parameters w.

The updating for w is:

wt = wt−1 − α∇fp(w; At)

= wt−1 − α(λwt−1 − 1

|At |
∑

(x,y)∈A+
t

yx) (3)
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where A+
t is the set of samples suffering non-zero losses,

α is the learning rate, and |At | = n is considered as the
batch size. Furthermore, Shai et al. suggested the learning
rate should decay with time, e.g. α = 1/tλ, to guarantee
convergence [5].

Pegasos has better speed, but it is likely to have
lower accuracies on complex data sets due to its intrinsic
linearity. In order to improve accuracies, many kernelized
methods are proposed, such as KP, OGD, BOGD, NOGD,
and FOGD. However, most of them have to update the
kernel matrix when a new sample is coming, which brings
expensive computational cost. Among of them, FOGD uses
Fourier features to avoid constructing the kernel matrix.
However, its accuracy and speed are limited by the number
of Fourier components. That is, the more components
sampled, the higher accuracy it obtains and the slower it
runs [13].

3 Sketch discriminatively regularized online
gradient descent classification

In this section, we will present our SDROGD, which is a
linear online method based on Pegasos. In order to keep
fast computational speed and high classification accuracy
simultaneously, SDROGD focuses on taking full advantage
of discriminative information rather than the kernelization.
Besides introducing the information into the loss function,
SDROGD directly embeds it into the regularization term
and thus constructs a new discriminative regularization
term.

3.1 Model construction

Given a training set S, we first measure the intra-class
compactness and inter-class separation with the help of the
within-class scatter matrix Sw and between-class scatter
matrix Sb respectively.

These two scatter matrices are defined as follows [14]:

Sb =
∑

c∈{−1,1}

Nc

N
(uc − u)(uc − u)T (4)

Sw = XT X
N

− uuT − Sb (5)

where uc ∈ R
d×1 is the mean vector of class c, and Nc is the

corresponding sample number. Moreover, u ∈ R
d×1 is the

mean vector of all the samples, and N is the whole sample
number. X ∈ R

N×d is the training matrix.
Then we define the discriminative information matrix R

as:

R = ηSw − (1 − η)Sb (6)

where η is a regularization parameter which controls the
relative importance between Sw and Sb, 0 ≤ η ≤ 1.

Inspired by [15], we directly embed R into the
regularization term. As a result, the objective function of
SDROGD can be formulated as:

f (w; S) = 1

|S|
∑

(x,y)∈S

l(w; (x, y)) + λ

2
wT w+ 1

2
wT Rw (7)

where w ∈ R
d×1.

wT Rw is the new discriminative regularization term.
Different from the Tikhonov smoothness regularization
term, it directly starts from the essence of classification.
More intuitively, wT Sbw reflects the distance between the
mean vector of each class and the global mean vector.
The larger the value, the greater the distance between
the different classes. Then wT Sww reflects the degree of
separation of the samples within each class. The smaller
the value, samples stay nearer in each class. Therefore, by
minimizing the objective function (7), we could make the
samples in the same class as near as possible while the
samples of different classes as far as possible in the output
space.

Just like Pegasos, SGD is applied to optimize the
objective function f (w; S) in an online manner. The
updating of w is:

wt = wt−1 − α∇f (w; At)

= wt−1 − α(λwt−1 + Rwt−1 − 1

|At |
∑

(x,y)∈A+
t

yx) (8)

Now, it is worth to point out that there are two issues
that need to be addressed. On the one hand, we have to
update Sw, Sb, and R when new samples come due to the
online setting. On the other hand, we have to cut down
the cost of updating w. Noticed that Sw, Sb, and R are all
d × d , if d is large, it will result in unaffordable storage
and computational cost especially when updating w with R
directly.

Actually, there are many methods to update Sw, Sb in
an online manner. For example, Pang et al. proposed a
method to update Sw and Sb incrementally [16], but it
has to preserve these two d × d matrices in memory.
Ye et al. proposed such an incremental method based on
QR decomposition [17], but there are still some d × d

matrices that appear in memory. Both of them inevitably
cause expensive cost on high-dimensional datasets. Another
more reasonable choice is to address this problem by the
sketch technique [18]. Combined with a simple optimization
trick, we can solve the two above issues simultaneously.
In the next two subsections, we will discuss the sketch
technique firstly and then elaborate on how to cut down the
computational cost.
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3.2 Sketch technique In SDROGD

Sketch technique also works iteratively and obtains a mini-
batch of samples at each iteration, which just coincides with
the SGD framework. It maintains the main variations of all
passed samples in a low-rank matrix B ∈ R

2l×d , called
as “sketch matrix”, where l is a hyperparameter, l � d

and B is initialized by all zero. At iteration t , each new
coming sample xi will replace one zero row in B from top
to bottom. Once B has no zero row, then the singular value
decomposition (SVD) is performed on B: B = U�V, where
� ∈ R

2l×2l is a diagonal matrix with all the singular values
of B in decreasing order at its main diagonal, V ∈ R

2l×d

and ith row of V is the corresponding singular vector of ith
singular value in �. After that, we set:

�̂ =
√
max(�2 − ξ2I,O)

B = �̂V (9)

where O ∈ R
2l×2l is a zero matrix, I ∈ R

2l×2l is an identity
matrix, and ξ is the (l + 1)th largest singular value. In this
way, all the singular values are rescaled and the bottom half
of B is reset to zero.

As the samples pass, the mean vectors u and uc are
also updated. Then one iteration ends up with returning Sb

and the approx Sw. Sb is still calculated as (4) while the
approximation of Sw is calculated as follows:

Ŝw = CT C
N

− uuT − Sb (10)

where C ∈ R
l×d is the upper half of B. Finally, it waits for

the next mini batch to start a new iteration.
It is worth to point out although Ŝw is an approximation

of the actual within-class scatter matrix Sw, they are close
enough. More detailed analysis is given in Section 4.
Then the calculation of discriminative information matrix is
changed to:

R̂ = ηŜw − (1 − η)Sb (11)

So far, R̂ effectively involves the discriminative information
of all the historical samples, which can be fully used in
classification.

Consequently, the objective function of SDROGD is
reformulated to:

f̂ (w; S) = 1

|S|
∑

(x,y)∈S

l(w; (x, y))+ λ

2
wT w+ 1

2
wT R̂w (12)

The corresponding updating for w is:

wt = wt−1 − α∇f̂ (w; At)

= wt−1 − α(λwt−1 + R̂wt−1 − 1

|At |
∑

(x,y)∈A+
t

yx) (13)

3.3 Cutting down the cost

As mentioned above, Ŝw, Sb, and R̂ are all d × d which still
need to be preserved in memory. If d is large, it may cause
memory overflow and serious time-consuming. Especially,
when updating w according to (13), the product of R̂
and wt−1 takes O(d2) time, which may be unaffordable.
Consequently, the only utilization of sketch technique still
unable to avoid the high computational cost. Next, we will
elaborate on how to solve this problem. For conciseness,
here we omit the subscript of wt−1.

Firstly, we define:

vc =
√

Nc

N
(uc − u) (14)

which is a d × 1 vector. c ∈ {−1, 1} denotes the class labels
of two classes. Therefore, the between-class scatter matrix
Sb can be rewritten as:

Sb = [v−1, v1][v−1, v1]T (15)

With the help of (10) and (15), the product of R̂ and w
can be calculated as follows:

z = R̂w = [ηŜw − (1 − η)Sb]w
= η(

CT C
N

− uuT − Sb)w − (1 − η)Sbw

= η(
CT C
N

− uuT )w − Sbw

= η
CT C
N

w − uuT w − [v−1, v1][v−1, v1]T w (16)

Reviewing that C ∈ R
l×d , it will take O(ld2) to compute

CT C and return a d × d result. The cost of this operation is
expensive. The similar situation also exists when computing
uuT and Sb.

In fact, this problem can be easily solved by reordering
the computation sequence. Considering that the product of
matrix satisfies the associative law, we calculate z using the
following order:

z = η
CT (Cw)

N
− u(uT w) − [v−1, v1]

(
[v−1, v1]T w

)
(17)

In this way, it is unnecessary to preserve Ŝw and Sb

explicitly any more and thus no d × d matrix appears in
memory. In addition, the time complexity is cut down to
O(ld). The pseudo code of SDROGD at iteration t is shown
in algorithm 1.

Author's personal copy



Sketch discriminatively regularized online gradient descent classification

4 Theoretical analysis

4.1 The approximative property

In this subsection, we will show f̂ (w; S) is a good
approximate of f (w; S). Firstly, from [19], we have the
following lemma:

Lemma 1 Given the whole training samples X ∈ R
N×d ,

the upper half of sketch matrix C ∈ R
l×d , then we have:

XT X � CT C and ‖XT X − CT C‖ ≤ 2‖X‖2/l.

Based on Lemma 1, we could obtain the following
theorem immediately:

Theorem 1 Given Sw calculated as (5) and Ŝw calculated
as (10), then for ∀w ∈ R

d ,

wT Ŝww ≤ wT Sww ≤ wT Ŝww + 2‖w‖2 ‖X‖2
Nl

Proof Firstly, according to (5) and (10), we have:

Sw − Ŝw = XT X − CT C
N

(18)

Combined with lemma 1:

0 ≤ ‖Sw − Ŝw‖ ≤ 2‖X‖2
Nl

(19)

Therefore

0 ≤ wT (Sw − Ŝw)w ≤ 2‖w‖2 ‖X‖2
Nl

(20)

which equals to

wT Ŝww ≤ wT Sww ≤ wT Ŝww + 2‖w‖2 ‖X‖2
Nl

(21)

Theorem 1 shows the relationship between the approx-
imate within-class scatter matrix Ŝw and the actual Sw.
Without loss of generality, we could suppose ‖w‖ = 1. Then
combined with (7) and (12), we could have the following
relation directly:

f̂ (w; S) ≤ f (w; S) ≤ f̂ (w; S) + c (22)

where c is a constant value irrelevant to w, c ≥ 0.
Now, we can find that sketch technique actually does

not lose too much information, that is, f̂ (w; S) is a good
approximation of f (w; S). Therefore, optimizing f̂ (w; S)

has similar effect of optimizing f (w; S) directly.

4.2 Convergence property

When R̂ is semi-positive definite or λ greater than the
absolute value of the minimal eigenvalue of R̂ at each
iteration, in other words, f̂ (w; At) is convex, the following
lemma gives the regret bound of SDROGD [20].

Lemma 2 Assume f̂ (wt ; At), t = 1, 2, . . . , T be a
sequence of convex functions, where ‖∇f̂ (wt ; At)‖ ≤ G,
and ‖wt‖2 ≤ D. Let w∗ be the optimal solution of f̂ (w; S),
then we have:

T∑

t=1

f̂ (wt ; At) −
T∑

t=1

f̂ (w∗; At) ≤ GD
√

T (23)

For completeness, here we give the proof of Lemma 2.

Proof Firstly, we have the following equation according to
(13)

‖wt+1 − w∗‖2 = ‖wt − α∇f̂ (w; At) − w∗‖2
= ‖wt − w∗‖2 + α2‖∇f̂ (w; At)‖2 − 2α∇f̂ (w; At) ·

(wt − w∗) (24)

Since f̂ (wt ; At) is a convex function, we have

f̂ (wt ; At) − f̂ (w∗; At) ≤ ∇f̂ (wt ; At) · (wt − w∗) (25)
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Rearrange (24) and substitute it into (25), we get

f̂ (wt ; At)−f̂ (w∗; At) ≤ 1

2α
(‖wt −w∗‖2−‖wt+1−w∗‖2)

+α

2
‖∇f̂ (w; At)‖2 (26)

Supposing that α is a constant and summing up (26) over
t from 1 to T , we get

T∑

t=1

f̂ (wt ; At) −
T∑

t=1

f̂ (w∗; At)

≤ 1

2α
(‖w1 − w∗‖2 − ‖wT −w∗‖2) + αT

2
‖∇f̂ (w; At)‖2

≤ 1

2α
D + αT

2
G (27)

Let α = D

G
√

T
, we will get the conclusion of

Lemma 2.

Otherwise, we could consider the objective f̂ (w; S) as
a general non-convex function. In this case, the following
lemma gives the convergence rate of SDROGD to an ε-
accuracy stationary point (i.e. ‖∇f̂ (wT ; S)‖2 ≤ ε) finally
[21].

Lemma 3 Suppose that (1) f̂ (w; S) is a Lipschitz-
continuous gradients function, that is |f̂ (wi; S) −
f̂ (wj ; S)−∇f̂ (wj ; S)·(wi −wj )| ≤ L

2 ‖wi −wj‖2, ∀i, j ∈
{1, 2, . . . , T }, L > 0 is a constant; (2) E[‖∇f̂ (w; At)‖] =
∇f̂ (w; S); (3) E[‖∇f̂ (w; At) − ∇f̂ (w; S)‖2] ≤ σ 2;(4)
the learning rate α is a constant less than 2/L. Then the
iterations T of SGD satisfies:

E[‖∇f̂ (wr ; S)‖2] ≤
√

mL

T
σ (28)

where m = 2(f̂ (w1; S) − f̂ (w∗; S)), and r is chosen
randomly from 1, 2, . . . , T .

Let ε = 1/
√

T , then the complexity of SGD to obtain an
ε-accuracy stationary point is O(1/ε2). For completeness,
we still give the proof of Lemma 3.

Proof Since f̂ (w; S) is Lipschitz-continuous gradients, we
have

f̂ (wt+1; S) ≤ f̂ (wt ; S) + ∇f̂ (wt ; S) · (wt+1 − wt )

+L

2
‖wt+1 − wt‖2 (29)

Now, let δt = ∇f̂ (wt ; At)−∇f̂ (wt ; S), then combine with
the updating (13), we have

f̂ (wt+1; S) ≤ f̂ (wt ; S) + ∇f̂ (wt ; S) · (wt+1 − wt ) + L

2
‖wt+1 − wt‖2

= f̂ (wt ; S)−α∇f̂ (wt ; S) · ∇f̂ (wt ;At ) + L

2
α2‖∇f̂ (wt ;At )‖2

= f̂ (wt ; S)−(α− Lα2

2
)‖∇f̂ (wt ; S)‖2−(α−Lα2)∇f̂ (wt ; S)δt

+ L

2
α2‖δt‖2 (30)

Summing up the above inequality and re-arranging the
terms, we obtain

T∑

t=1

(α − Lα2

2
)‖∇f̂ (wt ; S)‖2

≤ f̂ (w1; S) − f̂ (wT +1; S) −
T∑

t=1

(α−Lα2)∇f̂ (wt ; S) · δt

+L

2

T∑

t=1

α2‖δt‖2

≤ f̂ (w1; S) − f̂ (w∗; S) −
T∑

t=1

(α−Lα2)∇f̂ (wt ; S) · δt

+L

2

T∑

t=1

α2‖δt‖2 (31)

Taking expectations on both sides of (31) and noting that
E[‖δt‖2] ≤ σ 2 and E[∇f̂ (wt ; S) · δt ] = 0, we obtain

T∑

t=1

(α − Lα2

2
)E[‖∇f̂ (wt ; S)‖2] ≤ f̂ (w1; S) − f̂ (w∗; S)

+Lσ 2T α2

2
(32)

Now, supposing that r is chosen randomly
from 1, 2, . . . , T , we have TE[‖∇f̂ (wr ; S)‖2] =∑T

t=1 E[‖∇f̂ (wt ; S)‖2]. Therefore, (32) could be rewritten
as

E[‖∇f̂ (wr ; S)‖2]
≤ 1

T (2α − Lα2)
[2(f̂ (w1; S)−f̂ (w∗; S)) + Lσ 2T α2]

≤ 1

2αT
[2(f̂ (w1; S)−f̂ (w∗; S)) + Lσ 2T α2] (33)

Now, let m = 2(f̂ (w1; S) − f̂ (w∗; S)) and α =
√

m

T Lσ 2 ,

we have

E[‖∇f̂ (wr ; S)‖2] ≤
√

mL

T
σ (34)
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Table 1 The comparison of time/space complexity of related methods

Pegasos [5] KP [6] BOGD [9] NOGD [10] FOGD [10] BOLSSVM [12] SDROGD

Time O(Nd) O(N2d) O(NBd) O(NB(d + B2)) O(NBd) O(NB(d + B)) O(Ndl)

Space O(d) O(Nd) O(Bd) O(Bd) O(Bd) O(Bd) O(dl)

N means the total number of samples. d means the number of features. B is the budget of corresponding methods. l � d is a hyperparameter in
SDROGD

4.3 Complexity analysis

Following the discussion in Section 3, when a mini batch of
samples come and make B full, the method will perform the
sketch process. The costly operation is SVD on B, which
takes O(l2d) time.

Then the method will calculate z according to (17) and
update w. It only contains dot product operations and takes
O(ld) time.

In summary, during the training phase, B is full N/l

times in total and takes O(l2d) each time. Moreover, there
are N/n mini batches and each mini batch takes O(ld)

to update w. As a result, the computational complexity of
SDROGD is O(Ndl) in total.

As for space complexity, the largest variable that needs
to be stored is the sketch matrix B, so the space complexity
is O(dl).

For clarity, we compare SDROGD with some related
online classification methods in time and space complexity,
which is shown in Table 1.

5 Experiments

5.1 Datasets and preprocessing

We evaluate our SDROGD on ten datasets, including one
toy dataset and nine public datasets, that is a9a [22], cifar-
10 [23], cod-rna [24], german [25], gisette [26], ijcnn1 [27],
madelon [26], mnist [28], and real-sim [25]. Since cifar-10
and mnist datasets are multi-class, we randomly choose two
classes for training. Concretely, we use dog vs. horse for
cifar-10 dataset, and 0 vs. 1 for mnist dataset.

Cifar-101 and mnist2 datasets can be downloaded at their
official websites respectively. All the rest of public datasets
can be downloaded at LIBSVM3 or UCI repository4.
The toy dataset is generated by the sklearn [29] API:
make classification. It includes 8000 samples with 200

1https://www.cs.toronto.edu/∼kriz/cifar.html
2http://yann.lecun.com/exdb/mnist/
3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/
4http://archive.ics.uci.edu/ml/datasets.html

dimensions, which could be considered as two 200-
dimension Gaussian distribution with some noise. To be
more intuitive, we random select 400 samples from toy
dataset and visualize it after principal components analysis
(PCA), which is shown in Fig. 1.

We perform standardization on each dataset except a9a
and toy datasets. Standardization means removing the mean
and scaling to a unit variance for each feature. We transform
labels to {−1, 1} to satisfy the models’ input requirement.
Table 2 shows the details of all the datasets we used.

5.2 Experimental setup and results

We compare our method with other six methods: Pegasos
[5], KP [6], BOGD [9], NOGD [10], FOGD [10], and
BOLSSVM [12]. KP, BOGD, NOGD, and BOLSSVM have
both linear and Gaussian kernel versions. Pegasos only has
the linear version and FOGD only has the Gaussian kernel
version.

We set hyperparameters on datasets as follows. The
learning rate of Pegasos is set to 1/tλ following [5], while
the learning rate of the rest methods are set to 1/t . The batch
size n of Pegasos and SDROGD is set to 60 while the oth-
ers are 1. The budget g in BOGD, NOGD and BOLSSVM
is set to 100. The number of Fourier components f in
FOGD is also set to 100. The band width σ of radial basis

Fig. 1 400 random selected samples of toy dataset after PCA. The
original feature space is 400-dimension
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Table 2 The numbers of pos(itive) samples, neg(ative) samples and dim(ensions) of each dataset

#pos #neg #dim Standardized

a9a 11687 37155 123 NO

cifar-10 1977 2025 3072 YES

cod-rna 19845 39690 8 YES

german 300 700 24 YES

gisette 3500 3500 5000 YES

ijcnn1 13565 128126 22 YES

madelon 1300 1300 500 YES

mnist 7877 6903 784 YES

real-sim 22238 50071 20958 YES

toy 4003 3997 200 NO

function(rbf) used in the kernelized methods is searched
from {2−3, 2−2, . . . , 23}. The coefficient of the regular-
ization term λ in Pegasos, BOLSSVM, and SDROGD is
searched from {0, 2−3, 2−2, . . . , 23}(0 is available only for
SDROGD). The coefficient γ in BOGD is searched from
{1, 10, 100}. The rank K of the approximate kernel matrix
in NOGD is searched from {0.1g, 0.2g, . . . , 0.5g}. The

row number l of sketch matrix in SDROGD is searched
from {0.01d, 0.1d, 0.2d, . . . , 0.5d}, η is searched from
{0, 0.1, . . . , 1.0}.

Because the real-sim dataset is too large, it is too
time-consuming to perform grid search on it. Instead,
we adopt a random grid search from the same space
of hyperparameters. We randomly select ten different

Table 3 Comparison of average accuracy(%) on test sets

a9a cifar-10 cod-rna german gisette

Pegasos 75.90 ± 0.38• 67.57 ± 1.50 66.59 ± 0.21• 67.10 ± 2.16• 88.33 ± 2.80•
KP(ln) 78.32 ± 4.06• 64.84 ± 3.35 85.65 ± 3.45• 55.50 ± 2.21• 94.96 ± 1.33

KP(rbf) 76.30 ± 9.40 68.94 ± 1.34 92.97 ± 0.54 59.20 ± 18.68 90.90 ± 0.56•
BOGD(ln) 75.82 ± 0.47• 59.38 ± 4.29• 70.74 ± 5.30• 59.10 ± 9.63• 88.90 ± 2.47•
BOGD(rbf) 75.90 ± 0.38• 60.35 ± 1.71• 79.48 ± 1.63• 67.70 ± 1.99• 80.53 ± 5.75•
NOGD(ln) 81.49 ± 0.51• 63.22 ± 3.01 87.30 ± 1.96• 62.70 ± 5.62• 93.66 ± 0.96•
NOGD(rbf) 76.34 ± 0.72• 60.42 ± 1.25• 79.17 ± 2.14• 70.10 ± 4.55 79.64 ± 3.59•
FOGD 82.47 ± 0.90 49.99 ± 1.34• 94.26 ± 0.27◦ 64.50 ± 7.51• 50.17 ± 0.57•
BOLSSVM(ln) 77.14 ± 2.23• 50.24 ± 1.83• 90.17 ± 1.16• 68.70 ± 6.82 48.24 ± 1.82•
BOLSSVM(rbf) 77.15 ± 3.11• 50.14 ± 1.84• 90.67 ± 0.96• 66.90 ± 2.16• 50.39 ± 1.06•
SDROGD 83.49 ± 0.30 65.77 ± 2.85 93.03 ± 0.55 74.90 ± 1.34 96.40 ± 0.63

ijcnn1 madelon mnist real-sim toy

Pegasos 90.40 ± 0.07 49.08 ± 0.92• 92.02 ± 0.79• 69.61 ± 0.33• 49.64 ± 0.81•
KP(ln) 56.43 ± 1.36• 52.65 ± 1.17• 99.63 ± 0.11• NA 64.99 ± 7.31•
KP(rbf) 98.24 ± 0.18◦ 55.92 ± 1.04 99.63 ± 0.14• NA 64.46 ± 5.41•
BOGD(ln) 50.89 ± 2.44• 52.27 ± 0.52• 99.63 ± 0.07• 70.06 ± 2.20• 59.29 ± 2.16•
BOGD(rbf) 90.38 ± 0.16 51.08 ± 1.97• 94.91 ± 1.08• 39.86 ± 15.03• 54.00 ± 3.01•
NOGD(ln) 60.26 ± 3.87• 50.54 ± 2.00• 99.72 ± 0.09 69.18 ± 0.58• 60.56 ± 4.32•
NOGD(rbf) 90.46 ± 0.17 52.96 ± 2.80• 99.14 ± 0.28• 36.74 ± 15.39• 54.37 ± 3.05•
FOGD 95.46 ± 0.30◦ 50.92 ± 2.16• 87.12 ± 0.24• 50.29 ± 0.75• 53.79 ± 0.86•
BOLSSVM(ln) 89.29 ± 1.60 53.50 ± 3.28• 87.83 ± 19.48 59.73 ± 19.48• 52.62 ± 5.60•
BOLSSVM(rbf) 92.12 ± 0.85◦ 51.85 ± 3.52• 98.72 ± 0.27• 59.46 ± 19.00• 55.81 ± 3.70•
SDROGD 90.40 ± 0.13 57.54 ± 1.72 99.81 ± 0.09 92.96 ± 0.28 78.46 ± 5.20

“NA” means we don’t evaluate. “ln” means method using linear kernel and “rbf” means method using Gaussian kernel. In addition, •/◦ indicates
whether SDROGD is statistically superior/inferior to the compared algorithm on each dataset (pairwise t-test at 0.05 significance level)
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Table 4 Comparison of training time (seconds)

a9a cifar-10 cod-rna german gisette ijcnn1 madelon mnist real-sim toy

Pegasos 0.76 0.36 0.17 0.03 0.77 0.47 0.04 0.44 18.16 0.25

KP(ln) 146.30 24.99 32.18 0.39 31.35 813.21 2.61 1.67 NA 4.13

KP(rbf) 371.69 81.74 33.32 0.72 108.46 123.67 5.38 2.89 NA 17.12

BOGD(ln) 5.99 4.36 7.99 0.38 15.72 22.93 0.33 2.37 895.20 1.62

BOGD(rbf) 12.58 25.28 14.91 0.34 36.30 43.99 0.61 17.05 1731.65 3.48

NOGD(ln) 4.90 6.47 5.38 0.58 15.86 19.33 0.27 1.87 894.95 1.10

NOGD(rbf) 9.32 16.57 7.04 0.13 35.72 22.89 0.45 5.84 1778.34 1.67

FOGD 4.10 2.43 5.24 0.64 10.05 14.03 0.26 2.26 587.84 0.88

BOLSSVM(ln) 10.99 31.69 12.96 0.32 25.16 28.43 1.28 2.00 602.87 2.71

BOLSSVM(rbf) 12.99 20.83 8.64 0.27 98.28 20.56 1.63 4.78 1726.47 3.11

SDROGD 3.52 25.82 2.92 0.09 68.75 4.75 0.95 3.95 544.10 0.72

“NA” means we don’t evaluate. “ln” means method using linear kernel and “rbf” means method using Gaussian kernel

Fig. 2 The variation of test accuracy over iterations on each dataset
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combinations of hyperparameters for each method and then
choose the best. KP is not evaluated on the real-sim dataset,
since its expensive cost.

For all datasets, we randomly select 80% samples as
the training set and the rest 20% samples are considered
as the test set. Then we select hyperparameters by 3-fold
cross validation on the training set. This process repeats five
epochs. We record the two property in each epoch: (1)the
accuracy on test set; (2) the training time on the training set.

We report the average values in Tables 3 and 4. Besides,
we record accuracy variations as iterations on the test
set in Fig. 2. To show statistical significance, pairwise t-
test at 0.05 significance level is conducted between the
algorithms. Specifically, when SDROGD is significantly
superior/inferior to the compared algorithm on any dataset,
a marker •/◦ is shown. Otherwise, no marker is given [30].
In addition, we compare the second best method with our
SDROGD on those datasets where SDROGD is the best
according to the accuracy results. Then, we plot the ROC
curves and give the values of AUC respectively. The results
are shown in Fig. 3.

All the code is written in python. Our experiments run on
a Linux server with 2.40GHz Xeon(R) CPU E5-2680.

From Tables 3 and 4, we can see that SDROGD has
much better accuracies and good speed, especially on
high-dimensional datasets, such as gisette, madelon, and
real-sim datasets. The dimensions of these datasets are
very high, which implies they are more likely tend to
be linearly separable. SDROGD keeps the linearity of
Pegasos and embeds discriminative information into the
new regularization term, therefore, it is usually superior to
the others in such high-dimensional datasets. Furthermore,
SDROGD has even better accuracies than some kernelized
methods, and it usually runs faster than the kernelized
methods on average.

Figure 2 shows the variations of accuracies over
iterations on each dataset. SDROGD often has better
convergence. The accuracies of SDROGD on test sets
increase steadily over time and often reach higher scores
finally.

5.3 The effect of hyperparameters

From the results above, we can see that SDROGD
outperforms the others, especially on the real-sim dataset.
In this section, we will explore the influence of some

Fig. 3 The ROC curves of
SDROGD and the second best
method. The legend of each
sub-figure indicates the name of
method and the corresponding
AUC

.
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Fig. 4 The effect of some hyperparameters on real-sim dataset about
accuracy. The best setting given by random search is l = 0.01d,
η = 0.3, and λ = 0. We adjust these three hyperparameters

respectively while fix the rests. (1) l ∈ {0.01, 0.05, 0.1, 0.2, 0.3}; (2)
η ∈ {0.0, 0.1, . . . , 1.0}; (3) λ ∈ {0, 2−3, 2−2, . . . , 23}

hyperparameters on accuracy on the real-sim dataset. Based
on the best hyperparameters combination given by random
grid search, we adjust l, η, λ respectively while fixing the
others and record the variations of accuracies.

We random select 66.7% samples for training and 33.3%
for testing. After repeating 3 times, we compute the average
accuracy score.

The results are shown in Fig. 4. We could see that
SDROGD is insensitive to λ and l. In the course of the
experiment, we also find that setting λ to 0 will produce
good results in most cases. l controls how much information
the sketch matrix maintains, so the larger l, the more
accuracy in general, but a bigger l will brings heavier
computational burden. One needs to weigh performance
against accuracy when setting l.

From the second sub-figure of Fig. 4, it seems like η is a
more important hyperparameter. Although SDROGD gives
much low accuracy when η equals to 0.9 or 1.0, it performs
well in most cases.

6 Extending tomulti-class

Although in this paper we elaborate SDROGD in binary-class
setting, it is possible to extend it to deal with multi-class
problems. This extension just needs some small changes.
Firstly, according to [31], we change the model parameter w

from a d×1 vector to a d×C matrix, if there are C different
classes. Secondly, the loss function should be changed
to multi-class hinge loss [32] now. The discriminative
information matrix R support multi-class inherently, and
we could use it almost directly. Finally, we could get C

classification hyperplanes after training only one time.

7 Conclusion

In this paper, we present an online linear classification method
called SDROGD, which aims to deal with large-scale,

including high-dimensional datasets. In order to obtain
higher accuracy as well as keep a fast speed, we
directly embed the discriminative information matrix into
a new regularization term, which is constructed with
between-class and within-class scatter matrices. Sketch
technique is introduced to update this matrix in an
online manner. By doing so, SDROGD can minimize
the classification error and the intra-class compactness,
and maximize the inter-class separation simultaneously.
We also give theoretical analyses about the approximative
property of sketch technique, convergence property, and
computational complexity. Experimental results on many
datasets compared with other state-of-the-art methods
validate that SDROGD has better classification performance
even than some kernelized methods. Besides, we also
show that SDROGD has good stationarity as for some
hyperparameters. Finally, we show that it is also possible for
SDROGD to deal with multi-class problems.
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